home *** CD-ROM | disk | FTP | other *** search
- /*
- * jvirtmem.c
- *
- * Copyright (C) 1991, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file provides the system-dependent memory allocation routines
- * for the case where we can rely on virtual memory to handle large arrays.
- *
- * This includes some MS-DOS code just for trial purposes; "big" arrays will
- * have to be handled with temp files on MS-DOS, so a real implementation of
- * a DOS memory manager will probably be a separate file. (See additional
- * comments about big arrays, below.)
- *
- * NB: allocation routines never return NULL.
- * They should exit to error_exit if unsuccessful.
- */
-
- #include "jinclude.h"
-
- #ifdef __STDC__
- #include <stdlib.h> /* to declare malloc(), free() */
- #else
- extern void * malloc PP((size_t size));
- extern void free PP((void *ptr));
- #endif
-
-
- /* Insert system-specific definitions of far_malloc, far_free here. */
-
- #ifndef NEED_FAR_POINTERS /* Generic for non-braindamaged CPUs */
-
- #define far_malloc(x) malloc(x)
- #define far_free(x) free(x)
-
- #else /* NEED_FAR_POINTERS */
-
- #ifdef __TURBOC__
- /* These definitions work for Turbo C */
- #include <alloc.h> /* need farmalloc(), farfree() */
- #define far_malloc(x) farmalloc(x)
- #define far_free(x) farfree(x)
- #else
- #ifdef MSDOS
- /* These definitions work for Microsoft C and compatible compilers */
- #include <malloc.h> /* need _fmalloc(), _ffree() */
- #define far_malloc(x) _fmalloc(x)
- #define far_free(x) _ffree(x)
- #endif
- #endif
-
- #endif /* NEED_FAR_POINTERS */
-
-
- /*
- * Some important notes:
- * The array alloc/dealloc routines are not merely a convenience;
- * on 80x86 machines the bottom-level pointers in an array are FAR
- * and thus may not be allocatable by alloc_small.
- *
- * Also, it's not a good idea to try to merge the sarray and barray
- * routines, even though they are textually almost the same, because
- * samples are usually stored as bytes while coefficients are shorts.
- * Thus, in machines where byte pointers have a different representation
- * from word pointers, the resulting machine code could not be the same.
- */
-
-
- static external_methods_ptr methods; /* saved for access to error_exit */
-
-
- #ifdef MEM_STATS /* optional extra stuff for statistics */
-
- #define MALLOC_OVERHEAD (SIZEOF(char *)) /* assumed overhead per request */
- #define MALLOC_FAR_OVERHEAD (SIZEOF(char FAR *)) /* for "far" storage */
-
- static long total_num_small = 0; /* total # of small objects alloced */
- static long total_bytes_small = 0; /* total bytes requested */
- static long cur_num_small = 0; /* # currently alloced */
- static long max_num_small = 0; /* max simultaneously alloced */
-
- #ifdef NEED_FAR_POINTERS
- static long total_num_medium = 0; /* total # of medium objects alloced */
- static long total_bytes_medium = 0; /* total bytes requested */
- static long cur_num_medium = 0; /* # currently alloced */
- static long max_num_medium = 0; /* max simultaneously alloced */
- #endif
-
- static long total_num_sarray = 0; /* total # of sarray objects alloced */
- static long total_bytes_sarray = 0; /* total bytes requested */
- static long cur_num_sarray = 0; /* # currently alloced */
- static long max_num_sarray = 0; /* max simultaneously alloced */
-
- static long total_num_barray = 0; /* total # of barray objects alloced */
- static long total_bytes_barray = 0; /* total bytes requested */
- static long cur_num_barray = 0; /* # currently alloced */
- static long max_num_barray = 0; /* max simultaneously alloced */
-
-
- GLOBAL void
- j_mem_stats (void)
- {
- /* since this is only a debugging stub, we can cheat a little on the
- * trace message mechanism... helps 'cuz trace can't handle longs.
- */
- fprintf(stderr, "total_num_small = %ld\n", total_num_small);
- fprintf(stderr, "total_bytes_small = %ld\n", total_bytes_small);
- if (cur_num_small)
- fprintf(stderr, "CUR_NUM_SMALL = %ld\n", cur_num_small);
- fprintf(stderr, "max_num_small = %ld\n", max_num_small);
-
- #ifdef NEED_FAR_POINTERS
- fprintf(stderr, "total_num_medium = %ld\n", total_num_medium);
- fprintf(stderr, "total_bytes_medium = %ld\n", total_bytes_medium);
- if (cur_num_medium)
- fprintf(stderr, "CUR_NUM_MEDIUM = %ld\n", cur_num_medium);
- fprintf(stderr, "max_num_medium = %ld\n", max_num_medium);
- #endif
-
- fprintf(stderr, "total_num_sarray = %ld\n", total_num_sarray);
- fprintf(stderr, "total_bytes_sarray = %ld\n", total_bytes_sarray);
- if (cur_num_sarray)
- fprintf(stderr, "CUR_NUM_SARRAY = %ld\n", cur_num_sarray);
- fprintf(stderr, "max_num_sarray = %ld\n", max_num_sarray);
-
- fprintf(stderr, "total_num_barray = %ld\n", total_num_barray);
- fprintf(stderr, "total_bytes_barray = %ld\n", total_bytes_barray);
- if (cur_num_barray)
- fprintf(stderr, "CUR_NUM_BARRAY = %ld\n", cur_num_barray);
- fprintf(stderr, "max_num_barray = %ld\n", max_num_barray);
- }
-
- #endif /* MEM_STATS */
-
-
- LOCAL void
- out_of_memory (int which)
- /* Report an out-of-memory error and stop execution */
- /* If we compiled MEM_STATS support, report alloc requests before dying */
- {
- #ifdef MEM_STATS
- j_mem_stats();
- #endif
- ERREXIT1(methods, "Insufficient memory (case %d)", which);
- }
-
-
-
- METHODDEF void *
- alloc_small (size_t sizeofobject)
- /* Allocate a "small" (all-in-memory) object */
- {
- void * result;
-
- #ifdef MEM_STATS
- total_num_small++;
- total_bytes_small += sizeofobject + MALLOC_OVERHEAD;
- cur_num_small++;
- if (cur_num_small > max_num_small) max_num_small = cur_num_small;
- #endif
-
- result = malloc(sizeofobject);
- if (result == NULL)
- out_of_memory(1);
- return result;
- }
-
-
- METHODDEF void
- free_small (void *ptr)
- /* Free a "small" (all-in-memory) object */
- {
- free(ptr);
-
- #ifdef MEM_STATS
- cur_num_small--;
- #endif
- }
-
-
- #ifdef NEED_FAR_POINTERS
-
- METHODDEF void FAR *
- alloc_medium (size_t sizeofobject)
- /* Allocate a "medium" (all in memory, but in far heap) object */
- {
- void FAR * result;
-
- #ifdef MEM_STATS
- total_num_medium++;
- total_bytes_medium += sizeofobject + MALLOC_FAR_OVERHEAD;
- cur_num_medium++;
- if (cur_num_medium > max_num_medium) max_num_medium = cur_num_medium;
- #endif
-
- result = far_malloc(sizeofobject);
- if (result == NULL)
- out_of_memory(2);
- return result;
- }
-
-
- METHODDEF void
- free_medium (void FAR *ptr)
- /* Free a "medium" (all in memory, but in far heap) object */
- {
- far_free(ptr);
-
- #ifdef MEM_STATS
- cur_num_medium--;
- #endif
- }
-
- #endif /* NEED_FAR_POINTERS */
-
-
- METHODDEF JSAMPARRAY
- alloc_small_sarray (long samplesperrow, long numrows)
- /* Allocate a "small" (all-in-memory) 2-D sample array */
- {
- JSAMPARRAY result;
- long i;
-
- #ifdef MEM_STATS
- total_num_sarray++;
- total_bytes_sarray += (samplesperrow * SIZEOF(JSAMPLE) + MALLOC_FAR_OVERHEAD)
- * numrows;
- cur_num_sarray++;
- if (cur_num_sarray > max_num_sarray) max_num_sarray = cur_num_sarray;
- #endif
-
- /* Get space for row pointers; this is always "near" on 80x86 */
- result = (JSAMPARRAY) alloc_small((size_t) (numrows * SIZEOF(JSAMPROW)));
-
- /* Get the rows themselves; on 80x86 these are "far" */
- for (i = 0; i < numrows; i++) {
- result[i] = (JSAMPROW) far_malloc((size_t) (samplesperrow * SIZEOF(JSAMPLE)));
- if (result[i] == NULL)
- out_of_memory(3);
- }
-
- return result;
- }
-
-
- METHODDEF void
- free_small_sarray (JSAMPARRAY ptr, long numrows)
- /* Free a "small" (all-in-memory) 2-D sample array */
- {
- long i;
-
- /* Free the rows themselves; on 80x86 these are "far" */
- for (i = 0; i < numrows; i++) {
- far_free((void FAR *) ptr[i]);
- }
-
- /* Free space for row pointers; this is always "near" on 80x86 */
- free_small((void *) ptr);
-
- #ifdef MEM_STATS
- cur_num_sarray--;
- #endif
- }
-
-
- METHODDEF JBLOCKARRAY
- alloc_small_barray (long blocksperrow, long numrows)
- /* Allocate a "small" (all-in-memory) 2-D coefficient-block array */
- {
- JBLOCKARRAY result;
- long i;
-
- #ifdef MEM_STATS
- total_num_barray++;
- total_bytes_barray += (blocksperrow * SIZEOF(JBLOCK) + MALLOC_FAR_OVERHEAD)
- * numrows;
- cur_num_barray++;
- if (cur_num_barray > max_num_barray) max_num_barray = cur_num_barray;
- #endif
-
- /* Get space for row pointers; this is always "near" on 80x86 */
- result = (JBLOCKARRAY) alloc_small((size_t) (numrows * SIZEOF(JBLOCKROW)));
-
- /* Get the rows themselves; on 80x86 these are "far" */
- for (i = 0; i < numrows; i++) {
- result[i] = (JBLOCKROW) far_malloc((size_t) (blocksperrow * SIZEOF(JBLOCK)));
- if (result[i] == NULL)
- out_of_memory(4);
- }
-
- return result;
- }
-
-
- METHODDEF void
- free_small_barray (JBLOCKARRAY ptr, long numrows)
- /* Free a "small" (all-in-memory) 2-D coefficient-block array */
- {
- long i;
-
- /* Free the rows themselves; on 80x86 these are "far" */
- for (i = 0; i < numrows; i++) {
- far_free((void FAR *) ptr[i]);
- }
-
- /* Free space for row pointers; this is always "near" on 80x86 */
- free_small((void *) ptr);
-
- #ifdef MEM_STATS
- cur_num_barray--;
- #endif
- }
-
-
-
- /*
- * About "big" array management:
- *
- * To allow machines with limited memory to handle large images,
- * all processing in the JPEG system is done a few pixel or block rows
- * at a time. The above "small" array routines are only used to allocate
- * strip buffers (as wide as the image, but just a few rows high).
- * In some cases multiple passes must be made over the data. In these
- * cases the "big" array routines are used. The array is still accessed
- * a strip at a time, but the memory manager must save the whole array
- * for repeated accesses. The intended implementation is that there is
- * a strip buffer in memory (as high as is possible given the desired memory
- * limit), plus a backing file that holds the rest of the array.
- *
- * The request_big_array routines are told the total size of the image (in case
- * it is useful to know the total file size that will be needed). They are
- * also given the unit height, which is the number of rows that will be
- * accessed at once; the in-memory buffer should usually be made a multiple of
- * this height for best efficiency.
- *
- * The request routines create control blocks (and may open backing files),
- * but they don't create the in-memory buffers. This is postponed until
- * alloc_big_arrays is called. At that time the total amount of space needed
- * is known (approximately, anyway), so free memory can be divided up fairly.
- *
- * The access_big_array routines are responsible for making a specific strip
- * area accessible (after reading or writing the backing file, if necessary).
- * Note that the access routines are told whether the caller intends to modify
- * the accessed strip; during a read-only pass this saves having to rewrite
- * data to disk.
- *
- * The typical access pattern is one top-to-bottom pass to write the data,
- * followed by one or more read-only top-to-bottom passes. However, other
- * access patterns may occur while reading. For example, translation of image
- * formats that use bottom-to-top scan order will require bottom-to-top read
- * passes. The memory manager need not support multiple write passes nor
- * funny write orders (meaning that rearranging rows must be handled while
- * reading data out of the big array, not while putting it in).
- *
- * In current usage, the access requests are always for nonoverlapping strips;
- * that is, successive access start_row numbers always differ by exactly the
- * unitheight. This allows fairly simple buffer dump/reload logic if the
- * in-memory buffer is made a multiple of the unitheight. It would be
- * possible to keep subsampled rather than fullsize data in the "big" arrays,
- * thus reducing temp file size, if we supported overlapping strip access
- * (access requests differing by less than the unitheight). At the moment
- * I don't believe this is worth the extra complexity.
- *
- * This particular implementation doesn't use temp files; the whole of a big
- * array is allocated in (virtual) memory, and any swapping is done behind the
- * scenes by the operating system.
- */
-
-
-
- /* The control blocks for virtual arrays.
- * These are pretty minimal in this implementation.
- * Note: in this implementation we could realize big arrays
- * at request time and make alloc_big_arrays a no-op;
- * however, doing it separately keeps callers honest.
- */
-
- struct big_sarray_control {
- JSAMPARRAY mem_buffer; /* memory buffer (the whole thing, here) */
- long rows_in_mem; /* Height of memory buffer */
- long samplesperrow; /* Width of memory buffer */
- long unitheight; /* # of rows accessed by access_big_sarray() */
- big_sarray_ptr next; /* list link for unrealized arrays */
- };
-
- struct big_barray_control {
- JBLOCKARRAY mem_buffer; /* memory buffer (the whole thing, here) */
- long rows_in_mem; /* Height of memory buffer */
- long blocksperrow; /* Width of memory buffer */
- long unitheight; /* # of rows accessed by access_big_barray() */
- big_barray_ptr next; /* list link for unrealized arrays */
- };
-
-
- /* Headers of lists of control blocks for unrealized big arrays */
- static big_sarray_ptr unalloced_sarrays;
- static big_barray_ptr unalloced_barrays;
-
-
- METHODDEF big_sarray_ptr
- request_big_sarray (long samplesperrow, long numrows, long unitheight)
- /* Request a "big" (virtual-memory) 2-D sample array */
- {
- big_sarray_ptr result;
-
- /* get control block */
- result = (big_sarray_ptr) alloc_small(SIZEOF(struct big_sarray_control));
-
- result->mem_buffer = NULL; /* lets access routine spot premature access */
- result->rows_in_mem = numrows;
- result->samplesperrow = samplesperrow;
- result->unitheight = unitheight;
- result->next = unalloced_sarrays; /* add to list of unallocated arrays */
- unalloced_sarrays = result;
-
- return result;
- }
-
-
- METHODDEF big_barray_ptr
- request_big_barray (long blocksperrow, long numrows, long unitheight)
- /* Request a "big" (virtual-memory) 2-D coefficient-block array */
- {
- big_barray_ptr result;
-
- /* get control block */
- result = (big_barray_ptr) alloc_small(SIZEOF(struct big_barray_control));
-
- result->mem_buffer = NULL; /* lets access routine spot premature access */
- result->rows_in_mem = numrows;
- result->blocksperrow = blocksperrow;
- result->unitheight = unitheight;
- result->next = unalloced_barrays; /* add to list of unallocated arrays */
- unalloced_barrays = result;
-
- return result;
- }
-
-
- METHODDEF void
- alloc_big_arrays (long extra_small_samples, long extra_small_blocks,
- long extra_medium_space)
- /* Allocate the in-memory buffers for any unrealized "big" arrays */
- /* 'extra' values are upper bounds for total future small-array requests */
- /* and far-heap requests */
- {
- /* In this implementation we just malloc the whole arrays */
- /* and expect the system's virtual memory to worry about swapping them */
- big_sarray_ptr sptr;
- big_barray_ptr bptr;
-
- for (sptr = unalloced_sarrays; sptr != NULL; sptr = sptr->next) {
- sptr->mem_buffer = alloc_small_sarray(sptr->samplesperrow,
- sptr->rows_in_mem);
- }
-
- for (bptr = unalloced_barrays; bptr != NULL; bptr = bptr->next) {
- bptr->mem_buffer = alloc_small_barray(bptr->blocksperrow,
- bptr->rows_in_mem);
- }
-
- unalloced_sarrays = NULL; /* reset for possible future cycles */
- unalloced_barrays = NULL;
- }
-
-
- METHODDEF JSAMPARRAY
- access_big_sarray (big_sarray_ptr ptr, long start_row, boolean writable)
- /* Access the part of a "big" sample array starting at start_row */
- /* and extending for ptr->unitheight rows. writable is true if */
- /* caller intends to modify the accessed area. */
- {
- /* debugging check */
- if (start_row < 0 || start_row+ptr->unitheight > ptr->rows_in_mem ||
- ptr->mem_buffer == NULL)
- ERREXIT(methods, "Bogus access_big_sarray request");
-
- return ptr->mem_buffer + start_row;
- }
-
-
- METHODDEF JBLOCKARRAY
- access_big_barray (big_barray_ptr ptr, long start_row, boolean writable)
- /* Access the part of a "big" coefficient-block array starting at start_row */
- /* and extending for ptr->unitheight rows. writable is true if */
- /* caller intends to modify the accessed area. */
- {
- /* debugging check */
- if (start_row < 0 || start_row+ptr->unitheight > ptr->rows_in_mem ||
- ptr->mem_buffer == NULL)
- ERREXIT(methods, "Bogus access_big_barray request");
-
- return ptr->mem_buffer + start_row;
- }
-
-
- METHODDEF void
- free_big_sarray (big_sarray_ptr ptr)
- /* Free a "big" (virtual-memory) 2-D sample array */
- {
- free_small_sarray(ptr->mem_buffer, ptr->rows_in_mem);
- free_small((void *) ptr); /* free the control block too */
- }
-
-
- METHODDEF void
- free_big_barray (big_barray_ptr ptr)
- /* Free a "big" (virtual-memory) 2-D coefficient-block array */
- {
- free_small_barray(ptr->mem_buffer, ptr->rows_in_mem);
- free_small((void *) ptr); /* free the control block too */
- }
-
-
-
- /*
- * The method selection routine for virtual memory systems.
- * The system-dependent setup routine should call this routine
- * to install the necessary method pointers in the supplied struct.
- */
-
- GLOBAL void
- jselvirtmem (external_methods_ptr emethods)
- {
- methods = emethods; /* save struct addr for error exit access */
-
- emethods->alloc_small = alloc_small;
- emethods->free_small = free_small;
- #ifdef NEED_FAR_POINTERS
- emethods->alloc_medium = alloc_medium;
- emethods->free_medium = free_medium;
- #endif
- emethods->alloc_small_sarray = alloc_small_sarray;
- emethods->free_small_sarray = free_small_sarray;
- emethods->alloc_small_barray = alloc_small_barray;
- emethods->free_small_barray = free_small_barray;
- emethods->request_big_sarray = request_big_sarray;
- emethods->request_big_barray = request_big_barray;
- emethods->alloc_big_arrays = alloc_big_arrays;
- emethods->access_big_sarray = access_big_sarray;
- emethods->access_big_barray = access_big_barray;
- emethods->free_big_sarray = free_big_sarray;
- emethods->free_big_barray = free_big_barray;
-
- unalloced_sarrays = NULL; /* make sure list headers are empty */
- unalloced_barrays = NULL;
- }
-